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GOAL AND CONTENT

1. Introduce the notion of an action α ∶ X ↶ G of a locally
compact quantum group on an operator space/system.

2. Study the notion of equivariant injectivity for such an
operator space/system:

Y X

Z

G

G

G

3. Introduce associated crossed product operator
space/system X ⋊α G.

4. Investigate the canonical actions

X ⋊α G↶ G, X ⋊α G↶ Ǧ.
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Result (1): Ǧ-injectivity of X ⋊α G

Let α ∶ X ↶ G be a G-operator system. The following are
equivalent:
▸ X is G-injective.
▸ X ⋊α G is Ǧ-injective and α(X) = (X ⋊α G)Ǧ.

Result (2): G-injectivity of X ⋊α G

Let α ∶ X ↶ G be a G-operator system. The following are
equivalent:
▸ X ⋊α G is G-injective.
▸ X ⋊α G is injective and G is amenable.
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WHAT IS KNOWN ABOUT THESE RESULTS?

▸ No equivariance on the crossed product? Studied in the von
Neumann algebra setting by Anantharamon-Delaroche and
in the operator space setting by Hamana (classical groups).

▸ Bearden-Crann 21’: Established (1) in the von Neumann
setting under extra injectivity assumption (classical groups).

▸ De Ro-Hataishi 23’: Established (1) for G a discrete
quantum group.

Special cases:

▸ Applying (1) with X = C, we find that G is amenable if and
only if L∞(Ǧ) = C ⋊G is Ǧ-injective (Crann 17’).

▸ Applying (2) with X = L∞(G) and ∆ ∶ L∞(G) ↶ G, we find
that B(L2(G)) = L∞(G) ⋊∆ G is G-injective if and only if G is
amenable.
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OVERVIEW

1. Operator spaces/systems.

2. Locally compact quantum groups.

3. Equivariant operator spaces.

4. Equivariant injectivity of operator spaces.

5. Crossed products.

6. Equivariant injectivity of crossed products.

7. Application 1: Non-commutative Poisson boundary.

8. Application 2: Injective envelopes and crossed products.
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OPERATOR SPACES AND FUBINI TENSOR PRODUCT

Operator space

A (concrete) operator space X is a norm-closed linear subspace
of B(H) whereH is a Hilbert space.

Fubini tensor product

Let X ⊆ B(H),Y ⊆ B(K) be operator spaces. We define the Fubini
tensor product X⊗̄Y to be the set of all z ∈ B(H ⊗K) such that
(ω⊗̄ id)(z) ∈ Y for all ω ∈ B(H)∗ and (id ⊗̄χ)(z) ∈ X for all
χ ∈ B(K)∗.
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LOCALLY COMPACT QUANTUM GROUPS

▸ A Hopf-von Neumann algebra is a pair (M,∆) where M is a
von Neumann algebra and ∆ ∶M→M⊗̄M a unital, normal,
faithful ∗-homomorphism such that (∆⊗ id)∆ = (id⊗∆)∆.

▸ A locally compact quantum group (= lcqg) G is a Hopf von
Neumann algebra (L∞(G),∆) with invariant weights.

▸ We let L2(G) be a standard Hilbert space for the von
Neumann algebra L∞(G).

▸ There are fundamental multiplicative unitaries
V,W ∈ B(L2(G) ⊗ L2(G)) such that

∆(x) =W∗(1⊗ x)W = V(x⊗ 1)V∗, x ∈ L∞(G).

▸ We denote the predual of L∞(G) by L1(G).
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▸ We define

C0(G) = [(ω ⊗ id)(V) ∶ ω ∈ L1(G)] = [(id⊗ω)(W) ∶ ω ∈ L1(G)]

which is a σ-weakly dense C∗-subalgebra of L∞(G) with
∆(C0(G)) ⊆M(C0(G) ⊗ C0(G)).

▸ We define the von Neumann algebra and the coproduct

L∞(Ǧ) = [(id⊗ω)(V) ∣ ω ∈ L1(G)]σ-weak

∆̌ ∶ L∞(Ǧ) → L∞(Ǧ)⊗̄L∞(Ǧ) ∶ x ↦ V∗(1⊗ x)V.

▸ We also need the following notations:

∆l ∶ B(L2(G)) → L∞(G)⊗̄B(L2(G)) ∶ x ↦W∗(1⊗ x)W,

∆r ∶ B(L2(G)) → B(L2(G))⊗̄L∞(G) ∶ x ↦ V(x⊗ 1)V∗,
∆̌r ∶ B(L2(G)) → B(L2(G))⊗̄L∞(Ǧ) ∶ x ↦ V̌(x⊗ 1)V̌∗.
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▸ A lcqg G is called compact if C0(G) is unital, and we then
write C0(G) = C(G).

▸ A lcqg G is called discrete if Ǧ is compact.

▸ A lcqg G is called amenable if there exists a state
m ∶ L∞(G) → C such that

(m⊗ id)(∆(x)) =m(x)1, x ∈ L∞(G).

▸ A lcqg G is called inner amenable if there exists a state
n ∶ L∞(Ǧ) → C such that

(n⊗ id)(∆r(x)) = n(x)1, x ∈ L∞(Ǧ).
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EQUIVARIANT OPERATOR SPACES

G-operator space/system (cfr. Hamana 91’)
▸ A (right) G-operator space is a pair (X, α) where X is an

operator space and α ∶ X → X⊗̄L∞(G) is a complete
isometry such that the diagram

X X⊗̄L∞(G)

X⊗̄L∞(G) X⊗̄L∞(G)⊗̄L∞(G)

α

α α⊗id

id⊗∆

commutes.
▸ A G-operator system is a G-operator space (X, α) where X

is an operator system and α is unital.
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EQUIVARIANT OPERATOR SPACES

G-dynamical von Neumann algebra

A G-dynamical von Neumann algebra is a G-operator system
(M, α) where M is a von Neumann algebra and
α ∶M→M⊗̄L∞(G) is a normal ∗-homomorphism.

Important examples

Fix a G-dynamical von Neumann algebra (M, α). Define the
operator systems

X ∶= [(ω ⊗ id)α(m) ∶m ∈M, ω ∈M∗] ⊆ L∞(G),
Y ∶= [(id⊗ω)α(m) ∶m ∈M, ω ∈ L1(G)] ⊆M.

Then ∆(X) ⊆ X⊗̄L∞(G) and α(Y) ⊆ Y⊗̄L∞(G), so (X,∆) and
(Y, α) are G-operator systems.
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G-EQUIVARIANT MAPS

G-equivariant map

Let (X, α) and (Y, β) be two G-operator spaces. A completely
bounded map ϕ ∶ X → Y is said to be G-equivariant if the diagram

X Y

X⊗̄L∞(G) Y⊗̄L∞(G)

α

ϕ

β

ϕ⊗id

commutes. If we want to emphasize the actions, we write this as

ϕ ∶ (X, α) → (Y, β).



13

G-EQUIVARIANT INJECTIVITY

G-equivariant injectivity

A G-operator space (resp. system) X is said to be G-injective as
a G-operator space (resp. G-operator system) if for every (resp.
unital) completely isometric G-equivariant map ι ∶ Y → Z and
every (resp. unital) completely contractive G-equivariant map
ϕ ∶ Y → Z, there exists a G-equivariant complete contraction
Φ ∶ Z → X such that the following diagram commutes:

Y X

Z

ι

ϕ

Φ
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G-AMENABILITY AND RELATION WITH G-INJECTIVITY

G-amenability - Averaging procedure for the action

A G-operator space (X, α) is said to be G-amenable if there
exists a G-equivariant completely contractive conditional
expectation

E ∶ (X⊗̄L∞(G), id⊗∆) → (α(X), id⊗∆).
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Characterisation equivariant injectivity

Let (X, α) be a G-operator space. The following are equivalent:
1. (X, α) is G-injective (as a G-operator space).
2. X is injective and (X, α) is G-amenable.

If moreover (X, α) is a G-operator system, then this is also
equivalent with

3 (X, α) is G-injective (as a G-operator system).

Proof. (1) Ô⇒ (2)

Embed X ⊆ B(H). We have a commutative diagram

X X⊗̄L∞(G) B(H ⊗ L2(G))

X

idX

α ⊆

∃

Injectivity of B(H ⊗ L2(G)) implies the injectivity of X.
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Proof. (2) Ô⇒ (1).

Y X

Z

G

G

θ

By G-amenability of (X, α), there is a G-equivariant completely
contractive map E ∶ (X⊗̄L∞(G), id⊗∆) → (X, α) such that
E ○ α = idX. Consider the composition

Z Z⊗̄L∞(G) X⊗̄L∞(G) X.
αZ θ⊗id E

It is G-equivariant and makes the above diagram commute.
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CROSSED PRODUCTS

Fubini crossed product (cfr. Hamana 91’)

Let (X, α) be a G-operator space. We define the Fubini crossed
product operator space

X ⋊α G = {z ∈ X⊗̄B(L2(G)) ∶ (α⊗ id)(z) = (id⊗∆l)(z)}.

▸ If (X, α) and (Y, β) are G-operator spaces and
ϕ ∶ (X, α) → (Y, β) a G-equivariant completely bounded
map, we have

(ϕ⊗ id)(X ⋊α G) ⊆ Y ⋊β G.

▸ We write ϕ ⋊G ∶= (ϕ⊗ id)∣X⋊αG ∶ X ⋊α G→ Y ⋊β G.
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Dynamics of the Fubini crossed product

We have

(id⊗∆r)(X ⋊α G) ⊆ (X ⋊α G)⊗̄L∞(G)
(id⊗∆̌r)(X ⋊α G) ⊆ (X ⋊α G)⊗̄L∞(Ǧ).

Consequently, (X ⋊α G, id⊗∆r) is a G-operator space and
(X ⋊α G, id⊗∆̌r) is a Ǧ-operator space.
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Life is not always nice:

▸ It may happen that α(X) ⊊ (X ⋊α G)id⊗∆̌r .

▸ The Takesaki-Takai duality (X ⋊α G) ⋊id⊗∆̌r
Ǧ ≅ X⊗̄B(L2(G))

may not hold.

The following notion lies at the core of these issues:

G-complete operator space

A G-operator space (X, α) is said to be G-complete if for every
inclusion (X, α) ⊆G (Y, β) and every y ∈ Y such that

(id⊗ω)β(y) ∈ X

for all ω ∈ L1(G), we have that y ∈ X.

Note that every G-operator space (X, α) is G-complete if G is a
discrete quantum group.
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Consequences of G-completeness

Let (X, α) be a G-operator space.
1. If (X, α) is G-injective, it is G-complete.
2. If (X, α) is G-complete, then (X ⋊α G)id⊗∆̌r = α(X).
3. If (X, α) is G-complete, the complete isometry

Φ ∶ X⊗̄B(L2(G)) → X⊗̄B(L2(G))⊗̄B(L2(G))
Φ(z) = V∗23(α⊗ id)(z)V23, z ∈ X⊗̄B(L2(G))

has image Φ(X) = (X ⋊α G) ⋊id⊗∆̌r
Ǧ. In other words, the

Takesaki-Takai duality holds.

Remark: If Ǧ is amenable, then the converses of (2) and (3) are
true!
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Iterated crossed products
If (X, α) is a G-operator space, then the map

Φ ∶ ((X ⋊α G)⊗̄L∞(Ǧ), id⊗ id⊗∆̌) → ((X ⋊α G) ⋊id⊗∆r G, id⊗ id⊗∆̌r)

given by Φ(z) = V23zV∗23 is a Ǧ-equivariant completely isometric
isomorphism such that Φ ○ (id⊗∆̌r) = id⊗∆l on X ⋊α G.
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EQUIVARIANT INJECTIVITY OF CROSSED PRODUCTS

Ǧ-injectivity of X ⋊G

Let (X, α) be a G-operator system. The following statements are
equivalent:
1. (X, α) is G-injective.
2. (X ⋊α G, id⊗∆̌r) is Ǧ-injective and (X ⋊α G)id⊗∆̌r = α(X).
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Proof. (1) Ô⇒ (2)

Assume (X, α) is G-injective. We may assume X ⊆ B(H).
▸ There is a G-equivariant ucp map

ϕ ∶ (B(H)⊗̄L∞(G), id⊗∆) → (X, α)

such that ϕ ○ α = idX.
▸ The composition

B(H)⊗̄B(L2(G)) ≅ (B(H)⊗̄L∞(G)) ⋊id⊗∆ G
ϕ⋊GÐ→ X ⋊α G

is a ucp conditional expectation.
▸ Conclusion: X ⋊α G is injective.
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Proof. (1) Ô⇒ (2)

Consider a G-equivariant ucp map

E ∶ (X ⋊α G, id⊗∆r) → (X, α), E ○ α = idX .

We can consider the Ǧ-equivariant ucp map

((X ⋊α G)⊗̄L∞(Ǧ), id⊗ id⊗∆̌) ((X ⋊α G) ⋊id⊗∆r G, id⊗ id⊗∆̌r)

(X ⋊α G, id⊗∆̌r)

≅

E⋊G

which implements Ǧ-amenability of the action

id⊗∆̌r ∶ X ⋊α G↶ Ǧ.

Thus, (X ⋊α G, id⊗∆̌r) is Ǧ-injective.
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Proof. (2) Ô⇒ (1).

Assume that (Y, β) and (Z, γ) are G-operator systems, ι ∶ Y → Z
is a G-equivariant uci map and ϕ ∶ Y → X is a G-equivariant ucp
map. We obtain a Ǧ-equivariant unital completely positive map

Θ ∶ (Z ⋊γ G, id⊗∆̌r) → (X ⋊α G, id⊗∆̌r)

such that the diagram on the right commutes:

Y X Y ⋊β G X ⋊α G

Z Z ⋊γ G

ι

ϕ

ι⋊G

ϕ⋊G

Θ

The ucp map

Z ≅ γ(Z) (Z ⋊γ G)id⊗∆̌r (X ⋊α G)id⊗∆̌r = α(X) ≅ X⊆ Θ

is G-equivariant and makes the desired diagram commute.
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Corollaries

▸ Let (M, α) be a G-dynamical von Neumann algebra. Then (M, α)
is G-injective if and only if (M ⋊α G, id⊗∆̌r) is Ǧ-injective.

▸ G is amenable if and only if L∞(Ǧ) = C ⋊G is Ǧ-injective.

▸ Let (X, α) be a G-operator system. The following are equivalent:
1. (X ⋊α G, id⊗∆r) is G-injective.
2. X ⋊α G is injective and G is amenable.

Proof.
Only the last point requires proof. We know that (X ⋊α G, id⊗∆r) is
G-injective if and only if

((X ⋊α G) ⋊id⊗∆r G, id⊗ id⊗∆̌r) ≅ ((X ⋊α G)⊗̄L∞(Ǧ), id⊗ id⊗∆̌)

is Ǧ-injective (the fixed point property is automatic). This is equivalent
with the statement that X ⋊α G is injective and (L∞(Ǧ), ∆̌) is
Ǧ-injective, i.e. amenability of G.
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APPLICATION TO POISSON BOUNDARIES

▸ Let (M, α) be a G-dynamical von Neumann algebra and consider
a normal G-equivariant ucp map P ∶ (M, α) → (M, α).

▸ We then define the operator system of P-harmonic elements

H∞(M,P) = {x ∈M ∶ P(x) = x}.

▸ It is then easily checked that α(H∞(M,P)) ⊆ H∞(M,P)⊗̄L∞(G).
Thus, the restriction αP ∶ H∞(M,P) → H∞(M,P)⊗̄L∞(G) turns
H∞(M,P) into a G-operator system.

▸ Taking a cluster point of the sequence

{ 1
n

n
∑
k=1

Pk}
∞

n=1

of ucp maps M→M in the point σ-weak topology, we find a
G-equivariant ucp conditional expectation

E ∶M→H∞(M,P).



28

Amenable actions on the Poisson boundary

Let (M, α) be a G-dynamical von Neumann algebra.
1. If α ∶M↶ G is an amenable action, then so is

αP ∶ H∞(M,P) ↶ G.
2. If α ∶M↶ G is G-injective, then so is αP ∶ H∞(M,P) ↶ G.

Consequently,H∞(M,P) ⋊αP G is Ǧ-injective.

Of particular importance is the case where (M, α) = (L∞(G),∆).
In that case, to any state µ ∈ Cu(G)∗, we can associate a Markov
operator Pµ ∶ (L∞(G),∆) → (L∞(G),∆), which is a
G-equivariant, normal, ucp map. In that case, we write
Hµ ∶= H∞(L∞(G),Pµ) and ∆µ ∶=∆Pµ .
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▸ The following are equivalent:

1. Ǧ is inner amenable.

2. The action ∆ ∶ L∞(G) ↶ G is G-amenable.

▸ Taking µ = ϵ ∈ Cu(G)∗, we haveHϵ = L∞(G) and ∆ϵ =∆.

Amenable actions non-commutative Poisson boundary

If µ ∈ Cu(G)∗ is a state, we have:
(a) If Ǧ is inner amenable, then the action ∆µ ∶ Hµ ↶ G is

amenable.
(b) If Ǧ is amenable, then ∆µ ∶ Hµ ↶ G is G-injective.

Consequently,Hµ ⋊∆µ G is Ǧ-injective.
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INTERESTING REMARK

An amenable lcqg with a non-amenable action

Let G be a locally compact group that is not inner amenable
Then Ǧ is an amenable locally compact quantum group with
function algebra the right group von Neumann algebraR(G) and
coproduct uniquely determined by ∆̌(ρg) = ρg ⊗ ρg for g ∈ G. The
action ∆̌ ∶ R(G) ↶ Ǧ is not amenable.
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CROSSED PRODUCTS AND INJECTIVE ENVELOPES

Let X be a G-operator system. We let I1G(X) be the G-injective
envelope of X, i.e. the minimal G-injective G-operator system
containing X G-equivariantly (existence is non-trivial).

Compatibility crossed products and injective envelopes

Let G be a discrete quantum group. The following statements
are equivalent:
1. (Y, ι ∶ X → Y) is a G-injective envelope of X.
2. (Y ⋊β G, ι⋊G ∶ X ⋊α G→ Y ⋊β G) is a Ǧ-injective envelope of

X ⋊α G.
In particular, I1Ǧ(X ⋊α G) = I1G(X) ⋊G as Ǧ-operator systems.

▸ Proof relies on the Takesaki-Takai duality and the existence
of a normal counit ϵ ∈ ℓ1(G).
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▸ The corresponding result for G-C∗-operator systems was
already established in previous joint work with Lucas
Hataishi.

▸ Result also true for compact quantum groups (probably).

▸ If G is a discrete quantum group, we see that

I1Ǧ(L
∞(Ǧ)) = I1Ǧ(C ⋊G) ≅ I

1
G(C) ⋊G = C(∂FG) ⋊G.

▸ Open question: Do we have

I1Ǧ(X ⋊G) = I
1
G(X) ⋊G

for a co-amenable lcqg G?
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THANKS FOR YOUR ATTENTION!


