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GOAL AND CONTENT

1.

Introduce the notion of an action a.: X «~ G of a locally
compact quantum group on an operator space/system.

Study the notion of equivariant injectivity for such an
operator space/system:

Yy ——— X
A
G e
gl
Z

Introduce associated crossed product operator
space/system X x,, G.

Investigate the canonical actions
X, GG, Xy G G.



Result (1): G-injectivity of X x, G

Let a: X «~ G be a G-operator system. The following are
equivalent:

» X is G-injective. .

» X x4 G is G-injective and a(X) = (X x4 G)C.

Result (2): G-injectivity of X x, G

Let a: X «~ G be a G-operator system. The following are
equivalent:

» X %o, G is G-injective.

» X x4 Gisinjective and G is amenable.



WHAT IS KNOWN ABOUT THESE RESULTS?

» No equivariance on the crossed product? Studied in the von
Neumann algebra setting by Anantharamon-Delaroche and
in the operator space setting by Hamana (classical groups).

» Bearden-Crann 21" Established (1) in the von Neumann
setting under extra injectivity assumption (classical groups).

» De Ro-Hataishi 23" Established (1) for G a discrete
quantum group.

Special cases:

» Applying (1) with X = C, we find that G is amenable if and
only if L(G) = C x G is G-injective (Crann 17).

» Applying (2) with X = L*°(G) and A : L*°(G) » G, we find
that B(L?(G)) = L= (G) xa G is G-injective if and only if G is
amenable.
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Operator spaces/systems.
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Equivariant operator spaces.

Equivariant injectivity of operator spaces.

Crossed products.

Equivariant injectivity of crossed products.
Application 1: Non-commutative Poisson boundary.

Application 2: Injective envelopes and crossed products.



OPERATOR SPACES AND FUBINI TENSOR PRODUCT

Operator space

A (concrete) operator space X is a norm-closed linear subspace
of B(#H) where # is a Hilbert space.

Fubini tensor product

Let X < B(#),Y < B(K) be operator spaces. We define the Fubini
tensor product X®Y to be the set of all z € B(H ® K) such that
(w®id)(z) e Y forallw e B(H). and (id®x)(z) € X for all

X € B(K)..



LOCALLY COMPACT QUANTUM GROUPS

v

A Hopf-von Neumann algebra is a pair (M, A) where M is a
von Neumann algebra and A : M - M®M a unital, normal,
faithful *-homomorphism such that (A ® id)A = (id @A) A.

» Alocally compact quantum group (= Icqg) G is a Hopf von
Neumann algebra (L*°(G), A) with invariant weights.

» We let L2(G) be a standard Hilbert space for the von
Neumann algebra L= (G).

» There are fundamental multiplicative unitaries
V,W eB(L%(G) ® L%(G)) such that

AX)=W"(Tex)W=V(xe1)V*, xeclL™(G).

» We denote the predual of L*(G) by L'(G).



» We define
Co(G) = [(weid) (V) :weL'(G)] = [(idow) (W) :w e L'(G)]

which is a o-weakly dense C*-subalgebra of L*(G) with
A(Co(G)) € M(Co(G) ® Co(G)).

» We define the von Neumann algebra and the coproduct

LM(G) =[(idow)(V) |we L1(G)]‘7'Weak
A:L®(G) » L®(G)BL®(G) : x> V(1@ X)V.

» We also need the following notations:

A B(L2(G)) - L=(G)®B(LA(G)) : x » W* (1@ X)W,
Ar:B(L*(G)) - B(L%(G))BL™(G) : x = V(x ® 1)V*,
A, :B(L*(G)) - B(L2(G))BL®(G) : x = V(x @ 1)V*.
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A'lcqg G is called compact if Co(G) is unital, and we then
write Co(G) = C(G).

Alcqg G is called discrete if G is compact.

A'lcqg G is called amenable if there exists a state
m: L*°(G) — C such that

(meid)(A(x)) =m(x)1, xelL*(G).

A'lcqg G is called inner amenable if there exists a state
n:L*(G) - C such that

(n®id)(Ar(x)) =n(x)1, xeL™(G).



EQUIVARIANT OPERATOR SPACES

G-operator space/system (cfr. Hamana 97)

» A (right) G-operator space is a pair (X, ) where X is an
operator space and a : X - X®L*(G) is a complete
isometry such that the diagram

X o > XBL™(G)

i [

X8L=(G) ———> X&L*(G)&L™(G)
commutes.

» A G-operator system is a G-operator space (X, a) where X
is an operator system and « is unital.
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EQUIVARIANT OPERATOR SPACES

G-dynamical von Neumann algebra

A G-dynamical von Neumann algebra is a G-operator system
(M, ) where M is a von Neumann algebra and
a: M- M®L*(G) is a normal -homomorphism.

Important examples

Fix a G-dynamical von Neumann algebra (M, «). Define the
operator systems

X:=[(w®id)a(m):meM,weM,] cL=(G),
Y := [(id®w)a(m) :meM,w e L' (G)] c M.

Then A(X) € X®L*(G) and a(Y) € Y®&L*(G), so (X, A) and
(Y, «) are G-operator systems.



G-EQUIVARIANT MAPS

G-equivariant map

Let (X, ) and (Y, ) be two G-operator spaces. A completely
bounded map ¢ : X — Y is said to be G-equivariant if the diagram

X 2 > Y
o] ls
XRL*(G) W YRL*(G)

commutes. If we want to emphasize the actions, we write this as

¢: (X, ) > (Y, 5).
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G-EQUIVARIANT INJECTIVITY

G-equivariant injectivity

A G-operator space (resp. system) X is said to be G-injective as
a G-operator space (resp. G-operator system) if for every (resp.
unital) completely isometric G-equivariant map ¢+ : Y — Z and
every (resp. unital) completely contractive G-equivariant map

¢ : Y - Z, there exists a G-equivariant complete contraction

® : Z —» X such that the following diagram commutes:
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G-AMENABILITY AND RELATION WITH G-INJECTIVITY

G-amenability - Averaging procedure for the action

A G-operator space (X, «) is said to be G-amenable if there
exists a G-equivariant completely contractive conditional
expectation

E: (X&L®(G),id®A) - (a(X),id®A).
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Characterisation equivariant injectivity

Let (X, «) be a G-operator space. The following are equivalent:

1. (X, ) is G-injective (as a G-operator space).

2. Xisinjective and (X, «) is G-amenable.
If moreover (X, a) is a G-operator system, then this is also
equivalent with

3 (X, ) is G-injective (as a G-operator system).

Proof. (1) = (2)

Embed X c B(#H). We have a commutative diagram

X —— X8L*(G) ———— B(H&L*(G))
id&l T
e mmTTTT
X &7

Injectivity of B(H ® L?(G)) implies the injectivity of X.
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Proof. (2) = (1).

Y Lg{ X
G\[ ,//
Ly’
7 -

By G-amenability of (X, «), there is a G-equivariant completely
contractive map E : (X®&L*(G),id®A) - (X, «) such that
E o o = idy. Consider the composition

Z -2, 78L°(G) — 229, X&L>(G) —E X.

It is G-equivariant and makes the above diagram commute.

Ol
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GINONN=DALNO/DIVGIN

Fubini crossed product (cfr. Hamana 97)

Let (X, ) be a G-operator space. We define the Fubini crossed
product operator space

X 50 G = {z e XBB(LA(G)) : (a®id)(2) = (id®A))(2)}.

» If (X,a) and (Y, 8) are G-operator spaces and
¢: (X,a) - (Y, ) a G-equivariant completely bounded
map, we have

(¢®id)(X x4 G) c Y x5G.

» Wewrite ¢ x G = (¢ ®id)|xu,c : X %o G = Y x5 G.

17



Dynamics of the Fubini crossed product

We have

(d®A) (X 30 G) € (X 0 G)BL™(G)
(id ®Ar)(x 1o G) € (X xq G)él-oo(@)'

Consequently, (X x4 G,id ®A,) is a G-operator space and
(X x4 G,id®A,) is a G-operator space.
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Life is not always nice:
> It may happen that a(X) & (X xq G)i4®4r,

> The Takesaki-Takai duality (X xq G) x4 ga, G = X®B(L?(G))
may not hold.

The following notion lies at the core of these issues:

G-complete operator space

A G-operator space (X, «) is said to be G-complete if for every
inclusion (X, a) g (Y, ) and every y € Y such that

(idew)p(y) e X

for allw e L'(G), we have that y € X.

Note that every G-operator space (X, «) is G-complete if G is a
discrete quantum group.
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Consequences of G-completeness

Let (X, «) be a G-operator space.
1. If (X, «) is G-injective, it is G-complete.
2. If (X, @) is G-complete, then (X x,, G)9®4r = o(X).
3. If (X, «) is G-complete, the complete isometry

®: X@B(L%(G)) -~ X&B(L%(G))®B(L*(G))
®(2) = Vis(a®id)(z)Vaz, zeXBB(LA(G))

has image ®(X) = (X %o G) x4 94, G. In other words, the
Takesaki-Takai duality holds.

Remark: If G is amenable, then the converses of (2) and (3) are
true!
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lterated crossed products
If (X, «) is a G-operator space, then the map

(X2 G)BL™(G),id®id®A) - (X x4 G) xigen, G,id®id @A)

given by ®(z) = Vo3zV55 is a G-equivariant completely isometric
isomorphism such that ® o (id ®A;) = id ®A; on X »,, G.
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EQUIVARIANT INJECTIVITY OF CROSSED PRODUCTS

G-injectivity of X x G

Let (X, ) be a G-operator system. The following statements are
equivalent:

1. (X, «) is G-injective. )

2. (X »q G,id®A,) is G-injective and (X xq G)®4r = a(X).

22



Proof. (1) = (2)

Assume (X, «) is G-injective. We may assume X ¢ B(H).
» There is a G-equivariant ucp map

¢ (B(H)BL™(G),id®A) - (X, a)

such that ¢ o a = idy.
» The composition

B(H)BB(L2(G)) = (B(H)BL™(G)) %iasn G =5 X o G

is a ucp conditional expectation.
» Conclusion: X x,, G is injective.
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Proof. (1) = (2)
Consider a G-equivariant ucp map
E:(Xx,G,id®A;) - (X,a0), Eoa=idy.

We can consider the G-equivariant ucp map

(X x4 G)BL=(G),id®@id®A) ——= ((X x4 G) xigena, G,id®id®A,)

lE)«G

(X x4 G,id®A,)
which implements G-amenability of the action
id A, : X %y G~ G.

Thus, (X x4 G,id ®A,) is G-injective.
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Proof. (2) — (1).

Assume that (Y, 3) and (Z,~) are G-operator systems, t: Y - Z
is a G-equivariant ucimap and ¢ : Y — X is a G-equivariant ucp
map. We obtain a G-equivariant unital completely positive map

0 :(Zx,G,id®A;) - (X %, G,id®A,)

such that the diagram on the right commutes:

y —2 5 x Y6 —2% 5 X, G
o
1” lLXG ///,/’é
V4 Zx,G
The ucp map

Z2y(Z) —— (Zx,G)d®A O (X x, G)d®A = (X)) 2 X

is G-equivariant and makes the desired diagram commute. O]



Corollaries

> Let (M, «) be a G-dynamical von Neumann algebra. Then (M, a)
is G-injective if and only if (M x,, G,id®A4,) is G-injective.
» G is amenable if and only if L*(G) = C x G is G-injective.
» Let (X, a) be a G-operator system. The following are equivalent:
1. (X xq G,id®A,) is G-injective.
2. X x, G is injective and G is amenable.

Proof.

Only the last point requires proof. We know that (X x, G,id ®A,) is
G-injective if and only if

((X x4 G) igon, G,id®id®A;) 2 (X x4 G)BL®(G),id®id @A)

is G-injective (the fixed point property is automatic). This is equivalent
with the statement that X x,, G is injective and (L=(G),A) is
G-injective, i.e. amenability of G. O]
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APPLICATION TO POISSON BOUNDARIES

» Let (M, a) be a G-dynamical von Neumann algebra and consider
a normal G-equivariant ucp map P: (M, «) - (M, «).

» We then define the operator system of P-harmonic elements
H®(M,P)={xeM:P(x)=x}.

» |tis then easily checked that a(H*>(M,P)) c H=(M,P)&L*(G).
Thus, the restriction ap : H*(M,P) - H>(M,P)®L>(G) turns
H*> (M, P) into a G-operator system.

» Taking a cluster point of the sequence

N
= n=1
of ucp maps M — M in the point o-weak topology, we find a

G-equivariant ucp conditional expectation

E:M— H>(M,P).
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Amenable actions on the Poisson boundary

Let (M, «) be a G-dynamical von Neumann algebra.
1. If «: M G is an amenable action, then so is
ap: H*(M,P) ~G.
2. If a: M G is G-injective, then sois ap : H*(M,P) ~ G.
Consequently, (M, P) x,, G is G-injective.

Of particular importance is the case where (M, ) = (L*(G), A).
In that case, to any state u € Cy(G)*, we can associate a Markov
operator P, : (L*(G),A) - (L*(G),A), whichis a
G-equivariant, normal, ucp map. In that case, we write
Hy=HZ(L*(G),P,)and Ay, == Ap,.
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» The following are equivalent:
1. G is inner amenable.
2. The action A : L*(G) » G is G-amenable.
» Taking u =€ € Cy(G)*, we have H. = L*(G) and A, = A.
Amenable actions non-commutative Poisson boundary

If peCy(G)* is a state, we have:

(a) If G is inner amenable, then the action A, : H, ~ G is
amenable.

(b) If G is amenable, then A, : H,, ~ G is G-injective.
Consequently, H,, xa, G is G-injective.
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INTERESTING REMARK

An amenable Icgg with a non-amenable action

Let G be a locally compact group that is not inner amenable
Then G is an amenable locally compact quantum group with
function algebra the right group von Neumann algebra R(G) and
coproduct uniquely determined by A(pg) = pg ® pg for g € G. The
action A : R(G) ~ G is not amenable.

30



CROSSED PRODUCTS AND INJECTIVE ENVELOPES

Let X be a G-operator system. We let I, (X) be the G-injective
envelope of X, i.e. the minimal G-injective G-operator system
containing X G-equivariantly (existence is non-trivial).

Compatibility crossed products and injective envelopes

Let G be a discrete quantum group. The following statements
are equivalent:
1. (Y,.: X >Y) is a G-injective envelope of X.
2. (YxgG,txG:XxqG — Y xgG) is a G-injective envelope of
X x,G.
In particular, I} (X xq G) = If;(X) x G as G-operator systems.

» Proof relies on the Takesaki-Takai duality and the existence
of a normal counit e € £1(G).
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The corresponding result for G-C*-operator systems was
already established in previous joint work with Lucas
Hataishi.

Result also true for compact quantum groups (probably).

If G is a discrete quantum group, we see that

L(L=(G)) = [}(CxG) 2 [;(C) x G = C(JG) x G.

Open question: Do we have
(X% G) = I5(X) »G

for a co-amenable Icqg G?
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THANKS FOR YOUR ATTENTION!
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