Equivariant injectivity of crossed products

Joeri De Ro

GOAL AND CONTENT

- 1. Introduce the notion of an action $\alpha: X \bowtie \mathbb{G}$ of a locally compact quantum group on an operator space/system.
- 2. Study the notion of equivariant injectivity for such an operator space/system:

- 3. Introduce associated crossed product operator space/system $\mathbf{X} \rtimes_{\alpha} \mathbb{G}$.
- 4. Investigate the canonical actions

$$X \rtimes_{\alpha} \mathbb{G} \backsim \mathbb{G}, \qquad X \rtimes_{\alpha} \mathbb{G} \backsim \check{\mathbb{G}}.$$

Result (1): $\mathring{\mathbb{G}}$ -injectivity of $X \rtimes_{\alpha} \mathbb{G}$

Let $\alpha: \mathbf{X} \bowtie \mathbb{G}$ be a \mathbb{G} -operator system. The following are equivalent:

- ▶ X is G-injective.
- $X \rtimes_{\alpha} \mathbb{G}$ is $\check{\mathbb{G}}$ -injective and $\alpha(X) = (X \rtimes_{\alpha} \mathbb{G})^{\check{\mathbb{G}}}$.

Result (2): \mathbb{G} -injectivity of $X \rtimes_{\alpha} \mathbb{G}$

Let $\alpha: \mathbf{X} \bowtie \mathbb{G}$ be a \mathbb{G} -operator system. The following are equivalent:

- $X \rtimes_{\alpha} \mathbb{G}$ is \mathbb{G} -injective.
- $X \rtimes_{\alpha} \mathbb{G}$ is injective and \mathbb{G} is amenable.

WHAT IS KNOWN ABOUT THESE RESULTS?

- No equivariance on the crossed product? Studied in the von Neumann algebra setting by Anantharamon-Delaroche and in the operator space setting by Hamana (classical groups).
- Bearden-Crann 21': Established (1) in the von Neumann setting under extra injectivity assumption (classical groups).
- ▶ De Ro-Hataishi 23': Established (1) for G a discrete quantum group.

Special cases:

- Applying (1) with $X = \mathbb{C}$, we find that \mathbb{G} is amenable if and only if $L^{\infty}(\check{\mathbb{G}}) = \mathbb{C} \rtimes \mathbb{G}$ is $\check{\mathbb{G}}$ -injective (Crann 17').
- ▶ Applying (2) with $X = L^{\infty}(\mathbb{G})$ and $\Delta : L^{\infty}(\mathbb{G}) \hookrightarrow \mathbb{G}$, we find that $B(L^{2}(\mathbb{G})) = L^{\infty}(\mathbb{G}) \rtimes_{\Delta} \mathbb{G}$ is \mathbb{G} -injective if and only if \mathbb{G} is amenable.

OVERVIEW

- 1. Operator spaces/systems.
- 2. Locally compact quantum groups.
- 3. Equivariant operator spaces.
- 4. Equivariant injectivity of operator spaces.
- 5. Crossed products.
- 6. Equivariant injectivity of crossed products.
- 7. Application 1: Non-commutative Poisson boundary.
- 8. Application 2: Injective envelopes and crossed products.

OPERATOR SPACES AND FUBINI TENSOR PRODUCT

Operator space

A (concrete) operator space X is a norm-closed linear subspace of $B(\mathcal{H})$ where \mathcal{H} is a Hilbert space.

Fubini tensor product

Let $X \subseteq B(\mathcal{H}), Y \subseteq B(\mathcal{K})$ be operator spaces. We define the Fubini tensor product $X \bar{\otimes} Y$ to be the set of all $z \in B(\mathcal{H} \otimes \mathcal{K})$ such that $(\omega \bar{\otimes} \operatorname{id})(z) \in Y$ for all $\omega \in B(\mathcal{H})_*$ and $(\operatorname{id} \bar{\otimes} \chi)(z) \in X$ for all $\chi \in B(\mathcal{K})_*$.

LOCALLY COMPACT QUANTUM GROUPS

- ▶ A Hopf-von Neumann algebra is a pair (M, Δ) where M is a von Neumann algebra and $\Delta : M \to M \bar{\otimes} M$ a unital, normal, faithful *-homomorphism such that $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.
- A locally compact quantum group (= lcqg) \mathbb{G} is a Hopf von Neumann algebra $(L^{\infty}(\mathbb{G}), \Delta)$ with invariant weights.
- ▶ We let $L^2(\mathbb{G})$ be a standard Hilbert space for the von Neumann algebra $L^{\infty}(\mathbb{G})$.
- ► There are fundamental multiplicative unitaries $V, W \in B(L^2(\mathbb{G}) \otimes L^2(\mathbb{G}))$ such that

$$\Delta(x) = W^*(1 \otimes x)W = V(x \otimes 1)V^*, \quad x \in L^{\infty}(\mathbb{G}).$$

▶ We denote the predual of $L^{\infty}(\mathbb{G})$ by $L^{1}(\mathbb{G})$.

We define

$$C_0(\mathbb{G}) = [(\omega \otimes \mathrm{id})(V) : \omega \in L^1(\mathbb{G})] = [(\mathrm{id} \otimes \omega)(W) : \omega \in L^1(\mathbb{G})]$$

which is a σ -weakly dense C^* -subalgebra of $L^\infty(\mathbb{G})$ with $\Delta(C_0(\mathbb{G})) \subseteq M(C_0(\mathbb{G}) \otimes C_0(\mathbb{G}))$.

We define the von Neumann algebra and the coproduct

$$L^{\infty}(\check{\mathbb{G}}) = \left[(\mathrm{id} \otimes \omega)(V) \mid \omega \in L^{1}(\mathbb{G}) \right]^{\sigma\text{-weak}} \\ \check{\Delta} : L^{\infty}(\check{\mathbb{G}}) \to L^{\infty}(\check{\mathbb{G}}) \bar{\otimes} L^{\infty}(\check{\mathbb{G}}) : x \mapsto V^{*}(1 \otimes x)V.$$

We also need the following notations:

$$\Delta_{I}: B(L^{2}(\mathbb{G})) \to L^{\infty}(\mathbb{G}) \bar{\otimes} B(L^{2}(\mathbb{G})) : x \mapsto W^{*}(1 \otimes x)W,$$

$$\Delta_{r}: B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \bar{\otimes} L^{\infty}(\mathbb{G}) : x \mapsto V(x \otimes 1)V^{*},$$

$$\check{\Delta}_{r}: B(L^{2}(\mathbb{G})) \to B(L^{2}(\mathbb{G})) \bar{\otimes} L^{\infty}(\check{\mathbb{G}}) : x \mapsto \check{V}(x \otimes 1)\check{V}^{*}.$$

- ▶ A lcqg \mathbb{G} is called compact if $C_0(\mathbb{G})$ is unital, and we then write $C_0(\mathbb{G}) = C(\mathbb{G})$.
- ▶ A lcqg G is called discrete if Ğ is compact.
- ▶ A lcqg \mathbb{G} is called amenable if there exists a state $m: L^{\infty}(\mathbb{G}) \to \mathbb{C}$ such that

$$(m \otimes id)(\Delta(x)) = m(x)1, \quad x \in L^{\infty}(\mathbb{G}).$$

▶ A lcqg \mathbb{G} is called inner amenable if there exists a state $n: L^{\infty}(\check{\mathbb{G}}) \to \mathbb{C}$ such that

$$(n \otimes id)(\Delta_r(x)) = n(x)1, \quad x \in L^{\infty}(\check{\mathbb{G}}).$$

EQUIVARIANT OPERATOR SPACES

G-operator space/system (cfr. Hamana 91')

▶ A (right) G-operator space is a pair (X, α) where X is an operator space and $\alpha: X \to X \bar{\otimes} L^{\infty}(\mathbb{G})$ is a complete isometry such that the diagram

$$\begin{array}{ccc} X & \xrightarrow{\alpha} & X \bar{\otimes} L^{\infty}(\mathbb{G}) \\ \downarrow^{\alpha} & & \downarrow^{\alpha \otimes \mathrm{id}} \\ X \bar{\otimes} L^{\infty}(\mathbb{G}) & \xrightarrow{\mathrm{id} \otimes \Delta} & X \bar{\otimes} L^{\infty}(\mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G}) \end{array}$$

commutes.

▶ A G-operator system is a G-operator space (X, α) where X is an operator system and α is unital.

EQUIVARIANT OPERATOR SPACES

G-dynamical von Neumann algebra

A \mathbb{G} -dynamical von Neumann algebra is a \mathbb{G} -operator system (M, α) where M is a von Neumann algebra and $\alpha: M \to M \bar{\otimes} L^{\infty}(\mathbb{G})$ is a normal *-homomorphism.

Important examples

Fix a \mathbb{G} -dynamical von Neumann algebra (M, α) . Define the operator systems

$$X := [(\omega \otimes id)\alpha(m) : m \in M, \omega \in M_*] \subseteq L^{\infty}(\mathbb{G}),$$

$$Y := [(id \otimes \omega)\alpha(m) : m \in M, \omega \in L^{1}(\mathbb{G})] \subseteq M.$$

Then $\Delta(X) \subseteq X \bar{\otimes} L^{\infty}(\mathbb{G})$ and $\alpha(Y) \subseteq Y \bar{\otimes} L^{\infty}(\mathbb{G})$, so (X, Δ) and (Y, α) are \mathbb{G} -operator systems.

G-EQUIVARIANT MAPS

G-equivariant map

Let (X, α) and (Y, β) be two \mathbb{G} -operator spaces. A completely bounded map $\phi: X \to Y$ is said to be \mathbb{G} -equivariant if the diagram

$$\begin{array}{ccc}
X & \xrightarrow{\phi} & Y \\
\downarrow^{\beta} \\
X \bar{\otimes} L^{\infty}(\mathbb{G}) & \xrightarrow{\phi \otimes id} & Y \bar{\otimes} L^{\infty}(\mathbb{G})
\end{array}$$

commutes. If we want to emphasize the actions, we write this as

$$\phi: (X, \alpha) \to (Y, \beta).$$

G-EQUIVARIANT INJECTIVITY

G-equivariant injectivity

A \mathbb{G} -operator space (resp. system) X is said to be \mathbb{G} -injective as a \mathbb{G} -operator space (resp. \mathbb{G} -operator system) if for every (resp. unital) completely isometric \mathbb{G} -equivariant map $\iota:Y\to Z$ and every (resp. unital) completely contractive \mathbb{G} -equivariant map $\phi:Y\to Z$, there exists a \mathbb{G} -equivariant complete contraction $\Phi:Z\to X$ such that the following diagram commutes:

G-AMENABILITY AND RELATION WITH G-INJECTIVITY

G-amenability - Averaging procedure for the action

A \mathbb{G} -operator space (X,α) is said to be \mathbb{G} -amenable if there exists a \mathbb{G} -equivariant completely contractive conditional expectation

$$E: (X \bar{\otimes} L^{\infty}(\mathbb{G}), id \otimes \Delta) \rightarrow (\alpha(X), id \otimes \Delta).$$

Characterisation equivariant injectivity

Let (X, α) be a \mathbb{G} -operator space. The following are equivalent:

- 1. (X, α) is \mathbb{G} -injective (as a \mathbb{G} -operator space).
- **2**. X is injective and (X, α) is \mathbb{G} -amenable.

If moreover (\mathbf{X},α) is a \mathbb{G} -operator system, then this is also equivalent with

3 (X, α) is \mathbb{G} -injective (as a \mathbb{G} -operator system).

Proof. $(1) \implies (2)$

Embed $X \subseteq B(\mathcal{H})$. We have a commutative diagram

$$X \xrightarrow{\alpha} X \otimes L^{\infty}(\mathbb{G}) \xrightarrow{\subseteq} B(\mathcal{H} \otimes L^{2}(\mathbb{G}))$$

$$\downarrow_{\mathsf{id}_{X}} \downarrow_{\mathsf{X}} \leftarrow \mathbb{G}$$

Injectivity of $B(\mathcal{H} \otimes L^2(\mathbb{G}))$ implies the injectivity of X.

Proof. $(2) \implies (1)$.

By \mathbb{G} -amenability of (X, α) , there is a \mathbb{G} -equivariant completely contractive map $E: (X\bar{\otimes}L^{\infty}(\mathbb{G}), \mathrm{id}\otimes\Delta) \to (X, \alpha)$ such that $E \circ \alpha = \mathrm{id}_X$. Consider the composition

$$Z \xrightarrow{\alpha_{\mathsf{Z}}} Z \bar{\otimes} L^{\infty}(\mathbb{G}) \xrightarrow{\theta \otimes \mathsf{id}} X \bar{\otimes} L^{\infty}(\mathbb{G}) \xrightarrow{E} X.$$

It is $\ensuremath{\mathbb{G}}\xspace$ -equivariant and makes the above diagram commute.

CROSSED PRODUCTS

Fubini crossed product (cfr. Hamana 91')

Let (X, α) be a \mathbb{G} -operator space. We define the Fubini crossed product operator space

$$X \rtimes_{\alpha} \mathbb{G} = \{z \in X \overline{\otimes} B(L^{2}(\mathbb{G})) : (\alpha \otimes id)(z) = (id \otimes \Delta_{I})(z)\}.$$

If (X, α) and (Y, β) are \mathbb{G} -operator spaces and $\phi: (X, \alpha) \to (Y, \beta)$ a \mathbb{G} -equivariant completely bounded map, we have

$$(\phi \otimes \mathsf{id})(X \rtimes_{\alpha} \mathbb{G}) \subseteq Y \rtimes_{\beta} \mathbb{G}.$$

 $\blacktriangleright \text{ We write } \phi \rtimes \mathbb{G} \coloneqq (\phi \otimes \mathsf{id})|_{\mathsf{X} \rtimes_{\alpha} \mathbb{G}} : \mathsf{X} \rtimes_{\alpha} \mathbb{G} \to \mathsf{Y} \rtimes_{\beta} \mathbb{G}.$

Dynamics of the Fubini crossed product

We have

$$(\operatorname{id} \otimes \Delta_{\Gamma})(X \rtimes_{\alpha} \mathbb{G}) \subseteq (X \rtimes_{\alpha} \mathbb{G}) \bar{\otimes} L^{\infty}(\mathbb{G})$$
$$(\operatorname{id} \otimes \check{\Delta}_{\Gamma})(X \rtimes_{\alpha} \mathbb{G}) \subseteq (X \rtimes_{\alpha} \mathbb{G}) \bar{\otimes} L^{\infty}(\check{\mathbb{G}}).$$

Consequently, $(X \rtimes_{\alpha} \mathbb{G}, \operatorname{id} \otimes \Delta_r)$ is a \mathbb{G} -operator space and $(X \rtimes_{\alpha} \mathbb{G}, \operatorname{id} \otimes \check{\Delta}_r)$ is a $\check{\mathbb{G}}$ -operator space.

Life is not always nice:

- ▶ It may happen that $\alpha(X) \subseteq (X \rtimes_{\alpha} \mathbb{G})^{id \otimes \mathring{\Delta}_r}$.
- ▶ The Takesaki-Takai duality $(X \rtimes_{\alpha} \mathbb{G}) \rtimes_{\mathsf{id} \otimes \check{\Delta}_r} \check{\mathbb{G}} \cong X \bar{\otimes} B(L^2(\mathbb{G}))$ may not hold.

The following notion lies at the core of these issues:

G-complete operator space

A \mathbb{G} -operator space (X, α) is said to be \mathbb{G} -complete if for every inclusion $(X, \alpha) \subseteq_{\mathbb{G}} (Y, \beta)$ and every $y \in Y$ such that

$$(id \otimes \omega)\beta(y) \in X$$

for all $\omega \in L^1(\mathbb{G})$, we have that $y \in X$.

Note that every \mathbb{G} -operator space (X, α) is \mathbb{G} -complete if \mathbb{G} is a discrete quantum group.

Consequences of G-completeness

Let (X, α) be a \mathbb{G} -operator space.

- 1. If (X, α) is \mathbb{G} -injective, it is \mathbb{G} -complete.
- 2. If (X, α) is \mathbb{G} -complete, then $(X \rtimes_{\alpha} \mathbb{G})^{\operatorname{id} \otimes \check{\Delta}_{r}} = \alpha(X)$.
- 3. If (X, α) is \mathbb{G} -complete, the complete isometry

$$\begin{split} & \Phi: X \bar{\otimes} B(L^2(\mathbb{G})) \to X \bar{\otimes} B(L^2(\mathbb{G})) \bar{\otimes} B(L^2(\mathbb{G})) \\ & \Phi(z) = V_{23}^*(\alpha \otimes \mathsf{id})(z) V_{23}, \quad z \in X \bar{\otimes} B(L^2(\mathbb{G})) \end{split}$$

has image $\Phi(X) = (X \rtimes_{\alpha} \mathbb{G}) \rtimes_{\operatorname{id} \otimes \check{\Delta}_r} \check{\mathbb{G}}$. In other words, the Takesaki-Takai duality holds.

Remark: If $\check{\mathbb{G}}$ is amenable, then the converses of (2) and (3) are true!

Iterated crossed products

If (X, α) is a \mathbb{G} -operator space, then the map

$$\Phi: ((X\rtimes_\alpha\mathbb{G})\bar\otimes L^\infty(\check{\mathbb{G}}), \mathsf{id}\otimes\mathsf{id}\otimes\check\Delta) \to ((X\rtimes_\alpha\mathbb{G})\rtimes_{\mathsf{id}\otimes\Delta_r}\mathbb{G}, \mathsf{id}\otimes\mathsf{id}\otimes\check\Delta_r)$$

given by $\Phi(z) = V_{23}zV_{23}^*$ is a $\check{\mathbb{G}}$ -equivariant completely isometric isomorphism such that $\Phi \circ (\operatorname{id} \otimes \check{\Delta}_I) = \operatorname{id} \otimes \Delta_I \text{ on } X \rtimes_{\alpha} \mathbb{G}$.

EQUIVARIANT INJECTIVITY OF CROSSED PRODUCTS

$\check{\mathbb{G}}$ -injectivity of $X \rtimes \mathbb{G}$

Let (\mathbf{X}, α) be a \mathbb{G} -operator system. The following statements are equivalent:

- 1. (X, α) is \mathbb{G} -injective.
- 2. $(X \rtimes_{\alpha} \mathbb{G}, id \otimes \check{\Delta}_r)$ is $\check{\mathbb{G}}$ -injective and $(X \rtimes_{\alpha} \mathbb{G})^{id \otimes \check{\Delta}_r} = \alpha(X)$.

Proof. $(1) \implies (2)$

Assume (X, α) is \mathbb{G} -injective. We may assume $X \subseteq B(\mathcal{H})$.

► There is a G-equivariant ucp map

$$\phi: (B(\mathcal{H})\bar{\otimes}L^{\infty}(\mathbb{G}), \mathrm{id}\otimes\Delta) \to (X,\alpha)$$

such that $\phi \circ \alpha = id_X$.

The composition

$$B(\mathcal{H})\bar{\otimes}B(L^{2}(\mathbb{G}))\cong (B(\mathcal{H})\bar{\otimes}L^{\infty}(\mathbb{G}))\rtimes_{\mathsf{id}\otimes\Delta}\mathbb{G}\overset{\phi\rtimes\mathbb{G}}{\longrightarrow}X\rtimes_{\alpha}\mathbb{G}$$

is a ucp conditional expectation.

▶ Conclusion: $X \rtimes_{\alpha} \mathbb{G}$ is injective.

Proof. $(1) \implies (2)$

Consider a G-equivariant ucp map

$$E: (X \rtimes_{\alpha} \mathbb{G}, id \otimes \Delta_r) \to (X, \alpha), \quad E \circ \alpha = id_X.$$

We can consider the G-equivariant ucp map

$$\begin{array}{ccc} ((X\rtimes_{\alpha}\mathbb{G})\bar{\otimes}L^{\infty}(\check{\mathbb{G}}),\operatorname{id}\otimes\operatorname{id}\otimes\check{\Delta}) &\stackrel{\cong}{\longrightarrow} & ((X\rtimes_{\alpha}\mathbb{G})\rtimes_{\operatorname{id}\otimes\Delta_{r}}\mathbb{G},\operatorname{id}\otimes\operatorname{id}\otimes\check{\Delta}_{r}) \\ && & \downarrow_{E\rtimes\mathbb{G}} \\ && & (X\rtimes_{\alpha}\mathbb{G},\operatorname{id}\otimes\check{\Delta}_{r}) \end{array}$$

which implements G-amenability of the action

$$\mathsf{id} \otimes \check{\Delta}_r : X \rtimes_\alpha \mathbb{G} \backsim \check{\mathbb{G}}.$$

Thus, $(X \rtimes_{\alpha} \mathbb{G}, id \otimes \check{\Delta}_r)$ is $\check{\mathbb{G}}$ -injective.

Proof. (2) \Longrightarrow (1).

Assume that (Y, β) and (Z, γ) are \mathbb{G} -operator systems, $\iota : Y \to Z$ is a \mathbb{G} -equivariant uci map and $\phi : Y \to X$ is a \mathbb{G} -equivariant ucp map. We obtain a \mathbb{G} -equivariant unital completely positive map

$$\Theta: (Z \rtimes_{\gamma} \mathbb{G}, \mathsf{id} \otimes \check{\Delta}_r) \to (X \rtimes_{\alpha} \mathbb{G}, \mathsf{id} \otimes \check{\Delta}_r)$$

such that the diagram on the right commutes:

The ucp map

$$Z \cong \gamma(Z) \stackrel{\subseteq}{\longrightarrow} (Z \rtimes_{\gamma} \mathbb{G})^{id \otimes \check{\Delta}_r} \stackrel{\Theta}{\longrightarrow} (X \rtimes_{\alpha} \mathbb{G})^{id \otimes \check{\Delta}_r} = \alpha(X) \cong X$$

is \mathbb{G} -equivariant and makes the desired diagram commute.

Corollaries

- Let (M, α) be a \mathbb{G} -dynamical von Neumann algebra. Then (M, α) is \mathbb{G} -injective if and only if $(M \rtimes_{\alpha} \mathbb{G}, \operatorname{id} \otimes \check{\Delta}_r)$ is $\check{\mathbb{G}}$ -injective.
- ▶ \mathbb{G} is amenable if and only if $L^{\infty}(\check{\mathbb{G}}) = \mathbb{C} \rtimes \mathbb{G}$ is $\check{\mathbb{G}}$ -injective.
- Let (X, α) be a \mathbb{G} -operator system. The following are equivalent:
 - 1. $(X \rtimes_{\alpha} \mathbb{G}, id \otimes \Delta_r)$ is \mathbb{G} -injective.
 - 2. $X \rtimes_{\alpha} \mathbb{G}$ is injective and \mathbb{G} is amenable.

Proof.

Only the last point requires proof. We know that $(X \rtimes_{\alpha} \mathbb{G}, \operatorname{id} \otimes \Delta_r)$ is \mathbb{G} -injective if and only if

$$((\textbf{\textit{X}} \rtimes_{\alpha} \mathbb{G}) \rtimes_{\mathsf{id} \otimes \Delta_{r}} \mathbb{G}, \mathsf{id} \otimes \mathsf{id} \otimes \check{\Delta}_{r}) \cong ((\textbf{\textit{X}} \rtimes_{\alpha} \mathbb{G}) \bar{\otimes} L^{\infty}(\check{\mathbb{G}}), \mathsf{id} \otimes \mathsf{id} \otimes \check{\Delta})$$

is $\check{\mathbb{G}}$ -injective (the fixed point property is automatic). This is equivalent with the statement that $X \rtimes_{\alpha} \mathbb{G}$ is injective and $(L^{\infty}(\check{\mathbb{G}}), \check{\Delta})$ is $\check{\mathbb{G}}$ -injective, i.e. amenability of \mathbb{G} .

APPLICATION TO POISSON BOUNDARIES

- Let (M, α) be a \mathbb{G} -dynamical von Neumann algebra and consider a normal \mathbb{G} -equivariant ucp map $P: (M, \alpha) \to (M, \alpha)$.
- ▶ We then define the operator system of *P*-harmonic elements

$$\mathcal{H}^{\infty}(M,P) = \{x \in M : P(x) = x\}.$$

- ▶ It is then easily checked that $\alpha(\mathcal{H}^{\infty}(M,P)) \subseteq \mathcal{H}^{\infty}(M,P)\bar{\otimes}L^{\infty}(\mathbb{G})$. Thus, the restriction $\alpha_P : \mathcal{H}^{\infty}(M,P) \to \mathcal{H}^{\infty}(M,P)\bar{\otimes}L^{\infty}(\mathbb{G})$ turns $\mathcal{H}^{\infty}(M,P)$ into a \mathbb{G} -operator system.
- Taking a cluster point of the sequence

$$\left\{\frac{1}{n}\sum_{k=1}^{n}P^{k}\right\}_{n=1}^{\infty}$$

of ucp maps $M \to M$ in the point σ -weak topology, we find a \mathbb{G} -equivariant ucp conditional expectation

$$E: M \to \mathcal{H}^{\infty}(M,P).$$

Amenable actions on the Poisson boundary

Let (M, α) be a \mathbb{G} -dynamical von Neumann algebra.

- 1. If $\alpha : M \hookrightarrow \mathbb{G}$ is an amenable action, then so is $\alpha_P : \mathcal{H}^{\infty}(M,P) \hookrightarrow \mathbb{G}$.
- 2. If $\alpha : M \hookrightarrow \mathbb{G}$ is \mathbb{G} -injective, then so is $\alpha_P : \mathcal{H}^{\infty}(M,P) \hookrightarrow \mathbb{G}$. Consequently, $\mathcal{H}^{\infty}(M,P) \rtimes_{\alpha_P} \mathbb{G}$ is $\check{\mathbb{G}}$ -injective.

Of particular importance is the case where $(M,\alpha)=(L^\infty(\mathbb{G}),\Delta)$. In that case, to any state $\mu\in C_u(\mathbb{G})^*$, we can associate a Markov operator $P_\mu:(L^\infty(\mathbb{G}),\Delta)\to (L^\infty(\mathbb{G}),\Delta)$, which is a \mathbb{G} -equivariant, normal, ucp map. In that case, we write $\mathcal{H}_\mu:=\mathcal{H}^\infty(L^\infty(\mathbb{G}),P_\mu)$ and $\Delta_\mu:=\Delta_{P_\mu}$.

- ► The following are equivalent:
 - 1. Ğ is inner amenable.
 - 2. The action $\Delta : L^{\infty}(\mathbb{G}) \backsim \mathbb{G}$ is \mathbb{G} -amenable.
- ▶ Taking $\mu = \epsilon \in C_u(\mathbb{G})^*$, we have $\mathcal{H}_{\epsilon} = L^{\infty}(\mathbb{G})$ and $\Delta_{\epsilon} = \Delta$.

Amenable actions non-commutative Poisson boundary

If $\mu \in C_u(\mathbb{G})^*$ is a state, we have:

- (a) If $\check{\mathbb{G}}$ is inner amenable, then the action $\Delta_{\mu}:\mathcal{H}_{\mu} \hookrightarrow \mathbb{G}$ is amenable.
- (b) If $\check{\mathbb{G}}$ is amenable, then $\Delta_{\mu}:\mathcal{H}_{\mu} \succ \mathbb{G}$ is \mathbb{G} -injective. Consequently, $\mathcal{H}_{\mu} \rtimes_{\Delta_{\mu}} \mathbb{G}$ is $\check{\mathbb{G}}$ -injective.

INTERESTING REMARK

An amenable lcqg with a non-amenable action

Let G be a locally compact group that is not inner amenable Then \check{G} is an amenable locally compact quantum group with function algebra the right group von Neumann algebra $\mathcal{R}(G)$ and coproduct uniquely determined by $\check{\Delta}(\rho_g) = \rho_g \otimes \rho_g$ for $g \in G$. The action $\check{\Delta}: \mathcal{R}(G) \bowtie \check{G}$ is not amenable.

CROSSED PRODUCTS AND INJECTIVE ENVELOPES

Let X be a \mathbb{G} -operator system. We let $I^1_{\mathbb{G}}(X)$ be the \mathbb{G} -injective envelope of X, i.e. the minimal \mathbb{G} -injective \mathbb{G} -operator system containing X \mathbb{G} -equivariantly (existence is non-trivial).

Compatibility crossed products and injective envelopes

Let $\ensuremath{\mathbb{G}}$ be a discrete quantum group. The following statements are equivalent:

- 1. $(Y, \iota : X \to Y)$ is a \mathbb{G} -injective envelope of X.
- 2. $(Y \rtimes_{\beta} \mathbb{G}, \iota \rtimes \mathbb{G} : X \rtimes_{\alpha} \mathbb{G} \to Y \rtimes_{\beta} \mathbb{G})$ is a $\check{\mathbb{G}}$ -injective envelope of $X \rtimes_{\alpha} \mathbb{G}$.

In particular, $I^1_{\mathbb{G}}(X \rtimes_{\alpha} \mathbb{G}) = I^1_{\mathbb{G}}(X) \rtimes \mathbb{G}$ as $\check{\mathbb{G}}$ -operator systems.

▶ Proof relies on the Takesaki-Takai duality and the existence of a normal counit $\epsilon \in \ell^1(\mathbb{G})$.

- The corresponding result for G-C*-operator systems was already established in previous joint work with Lucas Hataishi.
- Result also true for compact quantum groups (probably).
- If G is a discrete quantum group, we see that

$$I^1_{\check{\mathbb{G}}}(L^\infty(\check{\mathbb{G}}))=I^1_{\check{\mathbb{G}}}(\mathbb{C}\rtimes\mathbb{G})\cong I^1_{\mathbb{G}}(\mathbb{C})\rtimes\mathbb{G}=C(\partial_F\mathbb{G})\rtimes\mathbb{G}.$$

Open question: Do we have

$$I^1_{\widetilde{\mathbb{C}}}(X \rtimes \mathbb{G}) = I^1_{\mathbb{G}}(X) \rtimes \mathbb{G}$$

for a co-amenable lcqg G?

THANKS FOR YOUR ATTENTION!